High performance computing for deformable image registration: Towards a new paradigm in adaptive radiotherapy.

نویسندگان

  • Sanjiv S Samant
  • Junyi Xia
  • Pınar Muyan-Özçelik
  • John D Owens
چکیده

The advent of readily available temporal imaging or time series volumetric (4D) imaging has become an indispensable component of treatment planning and adaptive radiotherapy (ART) at many radiotherapy centers. Deformable image registration (DIR) is also used in other areas of medical imaging, including motion corrected image reconstruction. Due to long computation time, clinical applications of DIR in radiation therapy and elsewhere have been limited and consequently relegated to offline analysis. With the recent advances in hardware and software, graphics processing unit (GPU) based computing is an emerging technology for general purpose computation, including DIR, and is suitable for highly parallelized computing. However, traditional general purpose computation on the GPU is limited because the constraints of the available programming platforms. As well, compared to CPU programming, the GPU currently has reduced dedicated processor memory, which can limit the useful working data set for parallelized processing. We present an implementation of the demons algorithm using the NVIDIA 8800 GTX GPU and the new CUDA programming language. The GPU performance will be compared with single threading and multithreading CPU implementations on an Intel dual core 2.4GHz CPU using the C programming language. CUDA provides a C-like language programming interface, and allows for direct access to the highly parallel compute units in the GPU. Comparisons for volumetric clinical lung images acquired using 4DCT were carried out. Computation time for 100 iterations in the range of 1.8-13.5s was observed for the GPU with image size ranging from 2.0×106to14.2×106pixels. The GPU registration was 55-61 times faster than the CPU for the single threading implementation, and 34-39 times faster for the multithreading implementation. For CPU based computing, the computational time generally has a linear dependence on image size for medical imaging data. Computational efficiency is characterized in terms of time per megapixels per iteration (TPMI) with units of seconds per megapixels per iteration (or spmi). For the demons algorithm, our CPU implementation yielded largely invariant values of TPMI. The mean TPMIs were 0.527spmi and 0.335spmi for the single threading and multithreading cases, respectively, with <2% variation over the considered image data range. For GPU computing, we achieved TPMI=0.00916 spmi with 3.7% variation, indicating optimized memory handling under CUDA. The paradigm of GPU based real-time DIR opens up a host of clinical applications for medical imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images

Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...

متن کامل

Evaluation of deformable image registration in HDR gynecological brachytherapy

Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...

متن کامل

Use of Deformable Image Registration for Radiotherapy Applications

In recent year, Deformable Image Registration (DIR) has become commercially available in the field of radiotherapy. DIR is an exciting and interesting technology for multi-modality image fusion, anatomic image segmentation, Four-dimensional (4D) dose accumulation and lung functional (ventilation) imaging. Furthermore, DIR is playing an important role in modern radiotherapy included Image-Guided...

متن کامل

A contour-guided deformable image registration algorithm for adaptive radiotherapy.

In adaptive radiotherapy, deformable image registration is often conducted between the planning CT and treatment CT (or cone beam CT) to generate a deformation vector field (DVF) for dose accumulation and contour propagation. The auto-propagated contours on the treatment CT may contain relatively large errors, especially in low-contrast regions. A clinician's inspection and editing of the propa...

متن کامل

Interactive Multigrid Refinement for Deformable Image Registration

Deformable image registration is the spatial mapping of corresponding locations between images and can be used for important applications in radiotherapy. Although numerous methods have attempted to register deformable medical images automatically, such as salient-feature-based registration (SFBR), free-form deformation (FFD), and demons, no automatic method for registration is perfect, and no ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 35 8  شماره 

صفحات  -

تاریخ انتشار 2008